Ability Over Age: Assessing Older Drivers

C.T. (Chip) Scialfa
University of Calgary
scialfa@ucalgary.ca
Driving in a Graying Population

- Population aging as a world-wide trend
 - By 2058, perhaps earlier, one in four Canadians will be over 65 yrs of age.
 - There will be a gender imbalance with older women far outnumbering older men.

- Increase in older drivers
 - By 2040, the number of older drivers will double!
The Value of Driving

- North American reliance on private automobile.
 - Role in independence, social support, instrumental activities of daily living, enjoyment.

- Driving cessation associated with;
 - Increased isolation, lower activity, depression and likelihood of death.
Collisions and Age

Ages of drivers involved in fatal and injury crashes (2002-2004)

Drivers involved in crashes

Age group
Collisions and Age

Driver Fatality Rate
(per 100 million VMT)

Source: FARS 2001 and NHTSA 2001
Collisions and Age

- Controlling for exposure, older drivers are more collision-involved, more likely to die or be seriously injured.
- This may be, in part, a low-mileage bias (Hakamies-Blomqvist et al. 2002).
- Older drivers are more likely to be involved in collisions involving intersections, merging, yielding right-of-way.
 - This despite strategic efforts to reduce risk.
The Challenge

- Though controversy over relative safety of older drivers…
 - Cost of collision greater for them.
 - Some older groups, particularly those with medical or cognitive impairment, are at particular risk.
 - More than $\frac{1}{2}$ of those diagnosed with dementia drive 3 yrs post-diagnosis.
 - Need reliable way to identify those who pose risk.
Who’s In Charge?

- In Alberta, Driver Fitness and Monitoring that deals with all drivers, including older drivers.
 - Anyone can report concerns.
 - Legal obligation to report medical conditions that MAY impact driving.
 - May require medical exam, screening or on-road assessment.
 - Clearly not realistic and usually falls to physicians or family members.
Who’s In Charge?

- Medical exam for driving fitness at 75, 80 and then every 2 yrs.
 - CCMTA publishes medical standards listing 14 medical categories that may warrant concern!
- Physicians receive little training in geriatrics or driving fitness
- Lack systematic, evidence-based rules for making decision.
- Other professional involvement (e.g., occupational therapists).
Abilities and Driving Safety

Driving as complex behavior

- Sub-tasks of navigation, lane control and hazard avoidance
- Smiley (2004) division of strategic, tactical and operational behaviors
 - Strategic – planning route, etc.
 - Tactical – situation-dependent decisions like gap acceptance.
 - Operational – often unconscious like scanning
- Amenable to training!
Abilities and Driving Safety

- Physical
 - Strength, flexibility and range of motion.

- Sensory and perceptual
 - Visual acuity, contrast sensitivity, depth perception, motion perception, peripheral vision, hearing, reaction time.

- Cognitive
 - Memory, attention, vigilance, hazard perception.
Aging and Driving Abilities

Medical

- Heart disease and risk of loss of consciousness.
- Neurological disorders including stroke, Parkinson’s and dementia.
- Depression
- Medications and substance abuse.
- Sleep disorders and fatigue.
Disease and Vision – Macular Degeneration
Disease and Vision - Cataract

A cataract is an opacity of the normally clear lens which may develop as a result of aging, metabolic disorders, trauma or heredity.
Disease and Vision - Glaucoma
Aging and Driving Abilities

- Physical
 - Loss of muscle mass and muscle function with impact on speed of response.
 - Range of motion, particularly neck rotation and role in shoulder-checking.
 - Loss of height/poor posture and scanning.
Aging and Driving Abilities

- Sensory-perceptual (largely vision)
 - Acuity
Aging and Driving Abilities

- Sensory-perceptual (largely vision)
 - Contrast sensitivity
Aging and Driving Abilities

- Sensory-perceptual (largely vision)
 - Visual fields and the UFOV
Aging and Driving Abilities

- Sensory-perceptual (largely vision)
 - Eye movements and visual search
Aging and Driving Abilities

- Sensory-perceptual (largely vision)
 - Pupil size, lens opacity and light scatter
Aging and Driving Abilities

- Cognition
 - Working memory (Delayed recall)
 - Orientation (MMSE, MOCA)
 - Attention (Visual search, Trails A)
 - Executive control (Trails B)
 - Processing speed (Digit symbol)
Evidence on Predictors of Driving Safety

- Anstey et al. (2005) review 13 studies of abilities related to driving. Good predictors included:
 - Attention including UFOV.
 - Reaction time.
 - Memory.
 - Trails A and B.
 - Some mental status measures.
 - Falls, heart disease, arthritis.
Evidence on Predictors of Driving Safety

 - Best predictors of collision were flexibility, strength, working memory, UFOV, missing information, Trails A and B, high and low contrast acuity.
Evidence on Predictors of Driving Safety

- Wood et al. (2011)
 - Multi-level battery including vision, cognition, hazard perception.
 - On-road assessment of 80 community-dwelling drivers 65-88 yrs old.
 - Hazard perception alone 75% sensitivity and 61% specificity.
 - HPT with color choice RT, exposure, motion sensitivity and sway has 80% sensitivity and 73% specificity.
Evidence on Predictors of Driving Safety

- Dobbs & Schopflocher (2010) tested two samples of referred elders with probable dementia.
 - Used SIMARD – Screen for the Identification of Medically At-Risk Drivers.
 - Paper and pencil tests to assess memory, speed, attention, verbal and visuospatial skills.
 - Outcome was DriveABLE pass or fail.
 - Good prediction ~ 80% but 1/3 indeterminate.
Evidence on Predictors of Driving Safety – Roadwise Review

Check your driving abilities... Conveniently, confidentially and from the comfort of home!

Roadwise Review™
A Tool to Help Seniors Drive Safely Longer
powered by: DRIVINGHEALTH® INVENTORY
The Roadwise Review

- Based on Maryland Older Driver Study (Staplin et al., 2003).
- Marketed and distributed by AAA/CAA as a screening tool for driving safety.
- Now available on-line.
The Roadwise Review

Tests

- Walking speed
- Head/neck flexibility
- High and Low Contrast Acuity
- Visualizing Missing Information
- UFOV
- Working Memory
- Visual Search (Trails A and B)
The Roadwise Review

Diagram with various symbols and numbers indicating a network or map.
Scialfa et al. (2010) – No subtest alone or in combination predicts self-reported collisions in healthy older drivers.

The Roadwise Review

- Scialfa et al. (under review) – walking speed, hazard perception test and color vision, predicts pass/fail on on-road test at 75% accuracy.
Screening Tests Summarized

- Some evidence that on-road performance can be predicted from screening tests.
 - Largely limited to healthy drivers.
 - Approximately 70% to 80% classification accuracy.
- Disagreement on preferred tests.
- Face validity, usability, time requirements and feasibility at issue.
Screening Tests Summarized

- Need for multi-source approach including:
 - Screening tests
 - Mental status
 - Clinical interview
 - Collision history
 - Independent sources
On-Road Assessment

- Characteristics
 - Approximately 20 km
 - Typically 40 minutes
 - Mixed residential/commercial
 - Varies depending on place of residence, evaluator, etc.
 - Typically in one’s own vehicle.
On-Road Assessment

- Dimensions of Evaluation
 - Lane control, parking, intersections, merging and overtaking, braking, speed maintenance, scanning.
 - Generally points accumulate for mistakes.
 - Automatic failures along multiple dimensions.
 - May involve written component for sign recognition and rules.
On-Road Assessment
On-Road Assessment

- Scialfa et al. (under review)
- Almost 70 healthy, current drivers between 56 and 89 yrs. No remarkable collision history.
- More than 50% failed on-road test! (see also Dobbs et al., 1998).
 - Common errors involve scanning, speed, intersections, turns, changing lane position.
On-Road Assessment

- **Issues**
 - Familiarity and demands of route.
 - “Normal” errors vs. critical errors.
 - Who pays? Required vs. elective assessments.
 - Alternative assessments (e.g., DriveABLE).
 - One-shot assessment vs. naturalistic driving.
 - Role of embedded technologies in future.
Training Older Adults in Hazard Perception

- Horswill et al. (2010)
 - 28 licensed drivers aged 65-94 yrs.
 - ~ 40 scenes previously used in HPT and shown to predict crash risk.
 - A random ½ of the sample had “running commentary” training of about 20 minutes.
Training Older Adults in Hazard Perception

Figure 1. Mean hazard perception latencies (in seconds) before and after training/control intervention. Error bars represent standard errors of the mean.
Training Older Adults in Scanning

 - 20+ drivers approximately 70 yrs old.
 - ½ given specific video-based feedback to improve blind-spot checking while turning or overtaking.
Training Older Adults in Scanning

Figure 1. On-road standardized score (left panel), frequency of successful turning maneuvers (middle panel) and frequency of blind spot verification before lane change maneuvers (right panel).
The Future

- Increasing importance of professional training (e.g., physicians and other health-care professionals).
- Creation, evaluation and implementation of screening instruments for widespread use.
- Evolution of on-road assessments for older drivers.
- Training tools (e.g., DriveSharp).
Thanks

AUTO21, NSERC, Alberta Motor Association, Micheline Deschênes, David Borkenhagen, Scheila Cordazzo, Rachel Ross, Kut Kemala, John Lyon, Mark Horswill, Mark Wetton, David Stewart and many others!